Transdifferentiation of NRP-152 rat prostatic basal epithelial cells toward a luminal phenotype: regulation by glucocorticoid, insulin-like growth factor-I and transforming growth factor-beta.

نویسنده

  • D Danielpour
چکیده

The role of basal epithelial cells in prostatic function, development and carcinogenesis is unknown. The ability of basal prostatic epithelial cells to acquire a luminal phenotype was explored in vitro using the NRP-152 rat dorsal-lateral prostate epithelial cell line as a model system. NRP-152, which was spontaneously immortalized and clonally derived, is an androgen-responsive and nontumorigenic cell line that has a basal cell phenotype under normal growth conditions. However, when placed in mitogen-deficient media, these cells undergo a dramatic morphological change to a luminal phenotype. Under these growth-restrictive conditions, immunocytochemical analysis shows that NRP-152 cells acquire the luminal markers Z0-1 (a tight-junction associated protein), occludin (integral tight-junction protein), and cytokeratin 18, and lose the basal markers cytokeratins 5 and 14. Total protein and mRNA levels of cytokeratins 8, 18, c-CAM 105 (the calcium-independent cell adhesion molecule) and Z0-1, as detected by western and/or northern blot analyses, respectively, are induced, while cytokeratin 5 and 15 are lost, and occludin is unchanged. Concomitant with this differentiation, expression of transforming growth factor-beta2 (TGF-beta2), TGF-beta3, and TGF-beta receptor type II (TbetaRII) is induced, while those of TGF-beta1 and TbetaRI remain essentially unchanged. Mitogens, such as insulin-like growth factor-I and dexamethasone inhibit luminal differentiation, while exogenous TGF-beta induces such differentiation. These data together with TGF-beta neutralization experiments using pan-specific antibody implicate an important role for autocrine TGF-beta in the induction of the luminal differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Apoptosis Induced by Transforming Growth

Transforming growth factor-fl (TGF-fil), which is induced in the prostate following castration, has been speculated to mediate apoptosis of epithelial cells during prostatic involution. Here, we report the first evi dence of a direct effect of TGF-fi on induction of apoptosis in prostatic epithelial cells in vitro, using NRP-152 nontumorigenic and NRP-154 tumorigemc rat prostatic epithelial cel...

متن کامل

Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate.

We have established two new epithelial cell lines (NRP-152, NRP-154), with markedly different properties, from the dorsal-lateral prostate of Lobund/Wistar rats treated with N-methyl-N-nitrosourea and testosterone propionate. NRP-152 cells do not form tumors in athymic mice and retain many of the properties of normal prostatic epithelial cells. They produce prostatic acid phosphatase, have func...

متن کامل

Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells.

Transforming growth factor-beta (TGF-beta) functions as a tumor suppressor of the prostate through mechanisms that remain unresolved. Although TGF-beta receptors directly activate both Smads 2 and 3, to date, Smad3 has been shown to be the essential mediator of most Smad-dependent TGF-beta responses, including control of gene expression, cell growth, apoptosis, and tumor suppression. Using a ro...

متن کامل

FLICE-like inhibitory protein blocks transforming growth factor beta 1-induced caspase activation and apoptosis in prostate epithelial cells.

Androgen withdrawal induces the regression of human prostate cancers, but such cancers eventually become androgen-independent and metastasize. Thus, deciphering the mechanism of androgen withdrawal-induced apoptosis is critical to designing new therapies for prostate cancer. Previously, we showed that in the rat, castration-induced apoptosis is accompanied by a reduction in the expression of th...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 112 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1999